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Abstract. This study analyzes the quality of simulated historical precipitation across the contiguous United States (CONUS)

in a 12-km Weather Research and Forecasting model version 4.2.1 (WRF v 4.2.1)-based dynamical downscaling of the fifth

generation ECMWF atmospheric reanalysis (ERA5). This work addresses the following questions: First, how well are the

3- and 24-hr precipitation characteristics (diurnal and annual cycles, precipitation frequency, annual and seasonal mean and

maximum precipitation, and distribution of seasonal maximum precipitation) represented in the downscaled simulation, com-5

pared to ERA5? And second, how does the performance of the simulated WRF precipitation vary across seasons, regions, and

timescales? Performance is measured against the NCEP/EMC 4-km Stage IV and PRISM data on 3-hr and 24-hr timescales,

respectively. Our analysis suggests that the 12-km WRF exhibits biases typically found in other WRF simulations, including

those at convection-permitting scales. In particular, WRF simulates both the timing and magnitude of the summer diurnal

precipitation peak as well as ERA5 over most of the CONUS, except for a delayed diurnal peak over the Great Plains. As10

compared to ERA5, both the month and the magnitude of the precipitation peak annual cycle are remarkably improved in the

downscaled WRF simulation. WRF slightly overestimates 3- and 24-hr precipitation maximum over the CONUS, in contrast

to ERA5 which generally underestimates these quantities mainly over eastern half of the CONUS. Notably, WRF better cap-

tures the probability density distribution (PDF) of 3- and 24-hr annual and seasonal maximum precipitation. WRF exhibits

seasonally-dependent precipitation biases across the CONUS, while ERA5’s biases are relatively consistent year-round over15

most of the CONUS. These results suggest that dynamical downscaling to a higher resolution improves upon some precipita-

tion metrics, but is susceptible to common regional climate model biases. Consequently, if used for operational purposes, we

suggest moderate bias-correction be applied to the dynamically downscaled product.
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1 Introduction20

Dynamical downscaling refers to the use of regional climate models forced with initial and lateral boundary conditions derived

from either a global climate model or reanalysis to generate high resolution climate output (Giorgi and Mearns, 1991). These

high resolution simulations add value through better representation of regional weather and climate phenomena, especially

over regions of complex and heterogeneous topography (Doblas-Reyes et al., 2021). For example, better representation of

local topography, water bodies and land-sea contrast improves local scale processes such as fine scale convection, land-sea25

breeze, and nonlinear interactions between local, mesoscale and large-scale processes (Caldwell et al., 2009; Di Luca et al.,

2015; Ashfaq et al., 2016; Prein et al., 2016; Bozkurt et al., 2019; Rastogi et al., 2022). The higher resolution and improved

representation of physical processes facilitate the studies on future changes in the mean and variability of the weather and

climate system (Barsugli et al., 2013) and distilled user-oriented regional climate information on local and regional scales

(Rhoades et al., 2020; Doblas-Reyes et al., 2021; Ranasinghe et al., 2021).30

Though increased resolution in downscaled climate models is fundamentally important for their utility at regional scales, it is

not sufficient for ensuring reliable and accurate information. The biases in regional climate model output are well documented.

These biases can originate from various sources, including the lateral boundary conditions (Christensen et al., 2008; Schoetter

et al., 2012; Giorgi, 2019) and parameterization schemes (Iguchi et al., 2017; Kong et al., 2022). However, biases are generally

not consistent and may vary based on the variable, region and season of interest (Castro et al., 2005; Prein et al., 2015;35

Diaconescu et al., 2016; Srivastava et al., 2020, 2021, 2022). High resolution and high quality climate data have many uses

for both advancing process understanding and for informing operations, particularly at local to regional scales. The ECMWF

atmospheric reanalysis (ERA5; Hersbach et al., 2020) represents a great stride forward in the development of a complete

historical meteorological dataset with sufficiently high temporal and spatial resolution to represent many forms of extreme

weather and their impacts. However, for investigating water resource availability, mountain snowpack, and land-atmosphere40

fluxes, particularly in the context of multi-sectoral dynamics, even finer grid spacing is required. Given the broad interest

among scientists and stakeholders in developing regional climate data products at 1/8◦ grid spacing based on high-quality

reanalysis, it is important to investigate to what degree (if any) the dynamically downscaled data improves upon the original

ERA5 product. Such a study is further valuable for informing other dynamical downscaling efforts, such as the international

Coordinated Regional Downscaling Experiment (CORDEX) program (Gutowski Jr. et al., 2016).45

In this study we evaluate the historical precipitation over the contiguous United States (CONUS) in a 12-km Weather Re-

search and Forecasting model version 4.2.1 (WRF v 4.2.1)-based dynamical downscaling of ERA5 over the period 1980-2020.

This WRF-based historical simulation is part of an ensemble data product (Jones et al., 2022) that includes thermodynamic

global warming (TGW) simulations under projected climate forcings (Jones et al., in prep). In this paper, we specifically ask:

(1) How well are the 3- and 24-hr precipitation characteristics (diurnal and annual cycles, precipitation frequency, annual and50

seasonal mean and maximum precipitation, and distribution of seasonal maximum precipitation) represented in the downscaled

WRF simulation, in comparison to ERA5? (2) How does the performance of the simulated WRF precipitation vary across sea-

sons, regions, and timescales? The performance of 3-hr ERA5 and WRF precipitation simulations are measured against the
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NCEP/EMC 4KM Gridded Stage IV Data (Stage IV). The performance of 24-hr ERA5 and WRF precipitation simulations

are measured against the Oregon State University Parameter-Elevation Regressions on Independent Slopes Model (PRISM)55

dataset.

The specific questions above are motivated by several important considerations. Most previous studies have focused on

the accuracy of the simulated precipitation on daily or longer timescales (e.g., Bukovsky and Karoly, 2009; Caldwell et al.,

2009; Rhoades et al., 2020; Srivastava et al., 2021, 2022; Gensini et al., 2022), likely because of availability of data on daily

timescales. However, many of the most high impact precipitation-related physical processes (such as short duration convective60

storms leading to extreme precipitation events or precipitation intermittency) occur at hourly timescales (Westra et al., 2013;

Trenberth et al., 2017), and conclusions drawn from analyzing longer time-scale precipitation do not automatically translate to

shorter timescales (Barbero et al., 2019). Further, regional climate models are known to be sensitive to both the resolved (e.g.,

horizontal resolution and simulation domain) and unresolved parameters (e.g., convection parameterization schemes), and so

particular RCM configurations must be examined before they can be used for regional application (Giorgi and Mearns, 1999;65

Liang et al., 2004). The 12km WRF simulation examined in this study uses a convective parameterization, which is considered

to be a major source of model biases on both subdaily and daily timescales (Dirmeyer et al., 2012; Hanel and Buishand,

2010; Knist et al., 2020). Moreover, a seasonal analysis of precipitation is important as generally both the observation-based

datasets (e.g., reanalyses) and models (e.g., WRF) better simulate precipitation in winter than in summer, mainly because winter

precipitation is mostly dominated by predictable large scale stratiform systems (Ebert et al., 2007) and summer precipitation is70

mainly influenced by unpredictable small-scale convective cells (Prein et al., 2015; Beck et al., 2019).

The rest of the paper is organized as follows: Section 2 describes the data and methodology used. Results are presented and

discussed in section 3 , and also tabulated in Table 1, then summarized in section 4.

2 Data and Method

2.1 WRF downscaling of ERA575

The Weather Research and Forecasting model version 4.2.1 is a state-of-the-art, fully compressible, non-hydrostatic, mesoscale

numerical weather prediction system designed for both atmospheric research and operational forecasting applications (Ska-

marock et al., 2008). For this study, the WRF simulation is carried out at 12-km horizontal grid spacing, and covers the

1980-2020 period (Fig. 1). The physical parameterizations chosen are: Thomson microphysics (Thompson and Eidhammer,

2014), the Tiedke cumulus parameterization (Tiedtke, 1989; Zhang et al., 2011), the Mellor-Yamada-Janjic boundary layer80

scheme (Janjić, 1994), and the Eta similarity surface layer (Janjić, 1994). Noah is employed for modeling the land surface

(Tewari et al., 2004). WRF is further coupled with an urban canopy model (UCM), which resolves urban surfaces, and its land

use/land cover is based on National Land Cover Data (NLCD, Dewitz, 2021).

The initial and boundary conditions are obtained from the ERA5 dataset (Hersbach et al., 2020). ERA5 is a fifth generation

ECMWF reanalysis product that assimilates a suite of observations (e.g., aircraft, in situ, and satellite) into the Integrated85
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Forecasting System (IFS) to produce hourly meteorological variables on a regular 0.25 degrees lat-lon grid with 137 vertical

levels.

2.1.1 Reference datasets

To evaluate the performance of 3-hr WRF precipitation, NCEP/EMC 4KM Gridded Data Stage IV Data (Stage IV) is used

as reference (Lin and Mitchell, 2005). The Stage IV is available at hourly temporal resolution and at 4 km horizontal grid90

spacing. The Stage IV is generated at NCEP from the regional hourly and 6-hourly multi-sensor (radar + gauges) precipitation

analyses produced by the 12 River Forecast Centers (RFCs) over the Continental United States. Beck et al. (2019) report that,

to minimize systematic biases in Stage IV data, the dataset is rescaled to match its long-term mean with that of the PRISM

dataset (details given below) over the evaluation period (2008–2017).

The performance of 24-hr WRF precipitation is evaluated against the Oregon State University Parameter-Elevation Regres-95

sions on Independent Slopes Model (PRISM) dataset at 4km grid spacing (Daly et al., 2008). The daily PRISM data uses in

situ data with a digital elevation model to account for the complex meteorological response from orography, rain shadows,

temperature inversions, slope aspect, coastal proximity, and other local features.

For comparison, ERA5, Stage IV and PRISM precipitation datasets are interpolated to the 12-km WRF grid using first-order

conservative remapping (Jones, 1999).100

2.1.2 Diurnal and annual cycle of precipitation

The diurnal cycle of precipitation is estimated by fitting the first two harmonics to the monthly mean 3-hr precipitation. Simi-

larly, the annual cycle of precipitation is estimated by fitting the first two harmonics to the monthly mean 24-hr precipitation.

The timing of the diurnal peak of the 3-hr precipitation is expressed in terms of local solar time (LST). LST hours are obtained

from UTC hours as follows (Watters et al., 2021):105

tLST = tUTC +
λ◦

15◦h−1
, (1)

where, tUTC and tLST are the coordinated universal time and local solar time, respectively. λ is the longitude, in degrees.

In this work, the subdaily precipitation is examined for the 2003-2019 period and the daily precipitation is analyzed for the

2001-2020 period. These periods are chosen for two considerations. First, the hourly Stage IV data are available only after

2002. Second, the variability is assumed to be the same in 20 year period. The results are summarized for the seven National110

Climate Assessment (NCA) regions over the CONUS (https://www.globalchange.gov/content/nca5-regions). The seven NCA

regions are: NW (northwest), SW (southwest), NGP (northern Great Plains), SGP (southern Great Plains), MW (Midwest), SE

(southeast), and NE (northeast).
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3 Results

3.1 Diurnal cycle of precipitation115

Fig. 2 shows the timing of the JJA diurnal precipitation peak in ERA5, WRF and Stage IV datasets (in hours at LST). We

chose to analyze the JJA diurnal cycle because the diurnal variations are stronger in summer than in winter (Dai et al., 1999).

Presumably this is because winter variations of precipitation are dominated by frontal cyclones and a frontal passage can occur

at any time of day thereby masking any diurnal cycle present. During summer, the frontal cyclone passages are much less

frequent, allowing the diurnal cycle to be more visible (e.g., Kunkel et al., 2012). The observed (Stage IV) spatial patterns120

show that, mostly, precipitation peaks in the afternoon over most of the CONUS, except for regions to the east of the Rocky

mountains (the Great Plains and MW regions). The eastward propagating shift in nighttime diurnal peak east of the Rockies

is consistent with mesoscale convective systems (MCSs) originating over the Rockies and moving eastward (Dai et al., 1999;

Tan et al., 2019; Scaff et al., 2020; Watters et al., 2021). ERA5 generally reproduces the spatial pattern of the observed diurnal

cycle, but the peak occurs earlier along the northern boundaries of the Northern Great Plains (NGP) and west of the Great125

Lakes in the Midwest (MW). The largest biases in ERA5 are found between 100◦-85◦W, also noted in Watters et al. (2021)

who compared biases in ERA5 against the Multi-Radar Multi-Sensor (MRMS) gauge-adjusted ground-based radar network

product. Similar to ERA5, WRF simulates the observed timing of the diurnal precipitation peak everywhere except over the

regions east of the Rockies. Over the regions falling east of 100◦W, the observed late night to early morning peak in the diurnal

cycle is delayed in the WRF simulation. Similar behavior was also noted in the convection-permitting WRF simulation of Scaff130

et al. (2020). The slow propagation eastward of convective systems is driven by cloud-scale phenomena that are not necessarily

well captured by the models used to generate datasets.

The observed spatial pattern of the diurnal precipitation peak magnitude (precipitation magnitude during the peak of the

diurnal cycle) is larger in the eastern CONUS compared to the western CONUS (Fig. 3), with the largest magnitude observed

along the Gulf coast and in Florida. ERA5 simulates the observed spatial pattern of the diurnal precipitation magnitude very135

well. Watters et al. (2021) found that ERA5 generally overestimates the magnitude over much of the CONUS in comparison

to the Integrated Multi-satellitE Retrievals for GPM (IMERG) dataset, possibly due to reliance on the convection parameteri-

zation. The differing performance of ERA5 against the two different reference datasets (as noted in Watters et al. (2021) and

our study) also points to uncertainties arising due to differences in reference datasets. WRF does capture the spatial pattern of

the observed diurnal precipitation peak magnitude over most of the CONUS; except over the Southeast where it overestimates140

the magnitude of the precipitation peak, and over the central Great Plains region where it underestimates the magnitude more

than ERA5. The biases in WRF diurnal precipitation magnitude are consistent with those of Scaff et al. (2020), suggesting that

current climate models, including WRF, underestimate MCS frequencies in summertime weak synoptic-scale forced conditions

(Prein et al., 2020).
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3.2 Annual cycle of precipitation145

Fig. 4 shows the timing (calendar month) of the monthly averaged precipitation peak (or the annual cycle of the monthly

averaged precipitation). Using PRISM as reference, maximum monthly precipitation occurs during winter season over the

western CONUS and parts of Arkansas, Mississippi, Louisiana, and the NE CONUS. The majority of the Great Plains is

dominated by the late spring and early summer precipitation, whereas the Southeast region gets most of the rainfall in the

summer season. This high resolution spatial map of the annual cycle of monthly precipitation is consistent with previous150

studies (e.g., Bukovsky and Karoly, 2007). Both ERA5 and WRF are able to simulate the spatial pattern of the annual cycle.

However, WRF outperforms ERA5 in simulating the spatial structure of the annual cycle, as it greatly improves ERA5 biases

over the NE, and parts of the SE and Great Plains regions.

The spatial pattern of the magnitude of the monthly averaged precipitation peak is shown in Fig. 5. The maximum monthly

averaged precipitation occurs along the western coast, Sierra Nevada mountains and in the Southeastern region. ERA5 under-155

estimates the precipitation magnitude over the NE and SE regions, and overestimates it over the Southern Great Plains. On

the other hand, WRF captures the spatial pattern of the magnitude very well across CONUS, and exhibits much lower biases

across the CONUS than ERA5.

In summary, both the timing and magnitude of the monthly averaged precipitation peak show improvement in the downscaled

WRF simulation.160

3.3 Evaluation of 3-hr precipitation

Fig. 6 shows the precipitation frequency of 3-hr precipitation. The precipitation frequency is computed as the counts of 3-hr

precipitation events with magnitude greater than 0.25 mm expressed as a percentage of the total number of 3-hr time steps.

Compared with Stage IV, ERA5 overestimates the precipitation frequency by 3–10% in all seasons over most of the CONUS

except over the NW and SW. It does underestimate the frequency over the hilly areas of the NW regions in JJA. WRF also165

exhibits more frequent precipitation mostly over NGP and MW regions in DJF and MAM. In contrast, WRF consistently

underestimates precipitation frequency along the west coast. Also, notably, WRF overestimates the frequency over the SE in

MAM and JJA and underestimates it in DJF. The spatial pattern of biases in the annual 3-hr precipitation frequency in WRF

is consistent with Kong et al. (2022), who found that precipitation frequency in WRF is more sensitive to the convective and

radiation schemes than the precipitation amount.170

3-hr mean precipitation (mean calculated over all 3-hr time steps) is shown in Fig. 7. From the Stage IV data, the 3-hr

mean precipitation is maximum over the coastal and mountainous regions of the western US (Washington, Oregon and Sierra

mountains of California). The eastern half of the CONUS experiences more 3-hr average precipitation than the western half

(except in the coastal and mountainous regions). The maximum values of Stage IV 3-hr precipitation observed along the

northwestern US states are missing in the satellite-derived and bias corrected gridded Climate Prediction Center Morphing175

technique (CMORPH) dataset, probably due to the insufficient representation of orography at 0.25◦× 0.25◦ grid spacing

(Kong et al., 2022). ERA5 generally overestimates the 3-hr mean precipitation over much of the CONUS throughout the year.
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On the other hand, while its performance is an improvement in many regions, WRF overestimates the precipitation over most of

the CONUS (except SGP) annually or in winter and spring seasons. When compared across seasons, WRF underestimates the

summer precipitation but overestimates the winter precipitation over the SGP region. Moreover, WRF simulates a much larger180

wet bias over the SE in summer than in any other season. The spatial pattern of the WRF simulated precipitation frequency

is similar to the mean precipitation amount, suggesting that the subdaily precipitation frequency affects the corresponding

subdaily mean precipitation in WRF. The spatial pattern of annual dry bias in the SGP and wet bias in the SE region is also

found in the other WRF simulation employing the Tiedke cumulus parameterizatiion scheme along with the Rapid Radiative

Transfer Model for global models (RRTMG) radiation scheme (Kong et al., 2022).185

The spatial pattern of the 3-hr annual maximum precipitation is shown in Fig. 8. The 3-hr annual maximum precipitation

in Stage IV exhibits higher values in the eastern half of the CONUS than in the western half. The spatial pattern and the

magnitude in Stage IV is similar to that obtained from the Next-Generation Radar (NEXRAD) dataset in Wehner et al. (2021).

ERA5 generally underestimates (mostly within ±5mm) the maximum precipitation in all seasons and everywhere. On the

other hand, WRF overestimates the 3-hr annual maximum precipitation over the eastern half of the CONUS, but shows clear190

seasonal variation in its biases over the western CONUS regions. For example, WRF slightly overestimates the precipitation

maxima over parts of the NW, SW, and the GP regions in DJF, but underestimates the maxima over those regions in JJA.

The above analysis of average 3-hr annual maximum precipitation provides little information on whether the datasets reason-

ably simulate the distribution of the 3-hr annual maximum precipitation. Fig. 9 shows the probability density function (PDF) of

the 3-hr annual maximum precipitation. In each panel, the y-axis uses a log-scale to clearly show higher, less frequent precipi-195

tation values. It is apparent from the figures that ERA5 consistently underestimates extreme precipitation values over all NCA

regions and across all seasons. WRF generally improves on the biases in ERA5 by producing higher extreme precipitation

values and thereby bringing the PDF of extreme precipitation values close to the observed PDF.

3.4 Evaluation of 24-hr precipitation

Fig. 10 shows the 24-hr precipitation frequency. The precipitation frequency is computed from the days when 24-hr precip-200

itation is more than 1 mm/day. ERA5 consistently overestimates the 24-hr precipitation frequency by more than 5% in all

seasons over most of the CONUS except NW and SW regions. It also underestimates the precipitation frequency over the SW

region in summer and fall. In contrast, WRF underestimates the frequency in the NW and SW regions, and shows frequency

biases in other regions that are seasonally dependent. For example, over the SE, WRF underestimates the frequency in DJF

but overestimates it in JJA. Similarly, WRF overestimates the frequency over NGP and MW in DJF, but it underestimates the205

frequency over those regions in JJA . It is also notable that WRF underestimates the frequency over most of the CONUS in JJA

(except SE) and SON. When compared with the biases in 3-hr precipitation frequency (Fig. 6), the spatial pattern of the biases

in ERA5 is similar for both 3-hr and 24-hr precipitation. However, the 24-hr precipitation frequency biases in WRF are larger

than those for 3-hr precipitation. This suggests that while ERA5 tends to exhibit more drizzle (i.e., low intensity precipitation),

WRF generally concentrates precipitation into fewer days of the year than we see in observations.210
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Biases in 24-hr precipitation mean are shown in Fig. 11. ERA5 consistently exhibits a dry bias in 24-hr mean precipitation

over the Southeast throughout the year. When compared with the frequency biases in Fig. 10, it appears that although ERA5

precipitates more frequently than PRISM, it precipitates less during wet days than PRISM. ERA5 generally exhibits wet biases

over other regions. Over the NE, ERA5 shows dry biases over regions close to the coasts and wet biases over the inland

areas – a pattern that may be associated with the insufficient ability of ERA5 parameterizations to produce sea breeze-induced215

precipitation (Crossett et al., 2020). WRF generally shows dry biases over the Great Plains, exhibiting typical model biases

existing in the state-of-the-art climate models (Srivastava et al., 2020). The spatial patterns of 24-hr frequency biases in WRF

(Fig. 10) are similar to the 24-hr mean precipitation. When compared with ERA5, WRF shows stronger dry biases over the

Great Plains regions, particularly in JJA. It is interesting to note that the spatial pattern of the seasonal 24-hr mean precipitation

biases in WRF is quite similar to those simulated by another recent bias-corrected convection-permitting WRF simulation over220

the CONUS (Gensini et al., 2022) – for example, JJA dry biases in both the studies are spread over most the CONUS. Similarly

dry biases over the SE region are quite similar. What is more striking is that the magnitude of the 24-hr mean biases in our

study are largely comparable to those in Gensini et al. (2022). The summer dry biases in the Great Plains have been reported

in previous analyses of WRF simulations employing convection-permitting or convection-parameterizing configurations (Sun

et al., 2016), and in other regional climate models, including WRF (Mearns et al., 2012; Gao et al., 2017). The summer dry225

biases in the Great Plains may be associated with the unrealistically strong coupling of convection with the surface heating

over the Rocky Mountains, and insufficiently resolved and slow propagating mesoscale systems (Mearns et al., 2012; Tripathi

and Dominguez, 2013; Hu et al., 2018).

Fig. 12 shows biases in 24-hr annual maximum precipitation. ERA5 shows strong and significant dry biases over the eastern

CONUS throughout the year. The ERA5 wet biases over the western CONUS are smaller than over the eastern half. These230

pattern are roughly similar to the 3-hr precipitation biases (Fig. 8). WRF generally shows seasonally-dependent biases across

CONUS. For example, it shows wet biases during summer and fall, but a mix of wet and dry biases during winter and spring

over the SE. When compared with ERA5, it is evident that though WRF reverses the sign of dry bias over most of the eastern

CONUS (except parts of the Great Plains), WRF exhibits smaller magnitude of biases across the CONUS than ERA5.

Finally, the PDF of 24-hr annual maximum precipitation is shown in Fig. 13. It is apparent that ERA5 severely underestimates235

the annual maximum precipitation across the CONUS and throughout the year. WRF does a much better job of simulating the

observed distribution as it reduces the biases in ERA5 frequency distribution of 24-hr annual maximum precipitation for most

of the regions and seasons.

For the sake of convenience, the results discussed in this section are also tabulated in Table 1.

4 Summary and discussion240

This paper evaluates the performance of the 12-km Weather Research and Forecasting (WRF) based dynamical downscaling of

the fifth generation ECMWF atmospheric reanalysis (ERA5) in simulating the subdaily and daily precipitation characteristics.

In particular, we evaluate diurnal and annual cycles, frequency and mean precipitation, annual maximum precipitation and its
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distribution. We addressed two questions specifically: (1) How well are the 3- and 24-hr precipitation characteristics represented

in the downscaled WRF simulation in comparison to those in ERA5? (2) How does the performance of the simulated WRF245

precipitation vary across seasons, regions, and timescales? We measure the ERA5 and WRF precipitation simulation against

the NCEP/EMC 4KM Stage IV and PRSIM data on 3-hr and 24-hr timescales, respectively.

Our analysis suggests that WRF performs similarly to ERA5 in capturing the timing and magnitude of the JJA 3-hr diurnal

precipitation peak over most of the CONUS, except the Great Plains regions. Over the Great Plains, WRF exhibits a diurnal

cycle delayed by a few hours, suggesting that the mesoscale convective systems, that originate in the Rockies and travel250

eastward, are slower in the WRF simulation – a typical model problem found in many previous studies. WRF simulates

the timing (month) and magnitude of the monthly mean 24-hr precipitation annual cycle much better than ERA5. Notably,

WRF improves the timing of the annual cycle over the NE, SE and areas surrounding the Gulf of Mexico. One noticeable

difference between ERA5 and WRF is that ERA5 generally displays similar signs of biases (positive or negative) in most

of the precipitation characteristics examined throughout the year and across most of the CONUS. However, WRF exhibits255

seasonally-dependent biases in the precipitation characteristics across the CONUS. For instance, ERA5 overestimates both the

frequency and mean of the 3-hr precipitation over most of the CONUS, except over parts of the western CONUS. On the other

hand, WRF underestimates the frequency and mean of the 3-hr precipitation over the SE in winter, but overestimates these

quantities in summer over that region. Similarly, WRF underestimates the mean 3-hr precipitation over the central Great Plains

region in summer, but not in winter. Also, ERA5 generally underpredicts the 3-hr annual and seasonal maximum precipitation260

throughout the year over the CONUS, but WRF overestimates it over the eastern CONUS in all seasons. What is interesting

is that ERA5 performs poorly in simulating the observed probability distribution of the 3-hr precipitation and thus severely

underestimates the observed 3-hr extreme precipitation, but WRF performs quite well in capturing the observed PDF, thereby

reducing the biases in ERA5. Similar to what was found for the 3-hr precipitation, ERA5 does show similar biases in the

24-hr precipitation, but WRF displays regionally- and seasonally dependent biases. WRF overestimates the 24-hr precipitation265

frequency over most of the CONUS (except, NW and SW). The 12-km WRF generally exhibits seasonally dependent biases

also found in the convection-permitting WRF simulation (Gensini et al., 2022). In this analysis, WRF underestimates the

frequency throughout the CONUS in SON, but overestimates the frequency over the eastern half of the CONUS in MAM.

The underestimated frequency in WRF is more severe in JJA. Similarly, ERA5 underestimates the 24-hr annual maximum

precipitation over the eastern half of the CONUS, most notably in the Great Plains and SE regions; whereas, these biases270

are generally reduced in magnitude in the WRF simulation, but they also occur with a change in the sign. Notably, ERA5

underestimates the 24-hr annual maximum precipitation over the SE, while WRF overestimates it (though by a smaller overall

magnitude). As observed for 3-hr precipitation, WRF shows remarkable improvements in the simulated probability distribution

of the 24-hr annual maximum precipitation; throughout the CONUS, ERA5 does have problems in capturing the extreme

precipitation magnitudes, suggesting that its representation of the strongest precipitation extremes is overly conservative. These275

results are also summarized in Table 1.

This work adds to the literature addressing the value of dynamical downscaling to higher resolution. Our results echo similar

past studies, which generally show a mixture of improvement and deterioration in the quality of simulated fields. Although we
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find that dynamical downscaling with WRF simulates observed precipitation characteristics reasonably well on both the daily

and subdaily timescales, improvements do not emerge everywhere. Particularly, WRF exhibits several common biases found in280

many other models, which are likely suppressed in ERA5 through data assimilation. As hypothesized in this study, WRF does

show seasonally- and regionally- dependent biases in precipitation, while ERA5’s biases are less seasonal. Nonetheless, WRF

greatly improves upon the PDFs of annual maximum precipitation at both 3-hr and 24-hr timescales, and improves on the month

and magnitude of the seasonal precipitation cycle. This suggests the WRF product is generally more useful when it comes to

its representation of precipitation extremes – which seems to be a consequence of the fact WRF tends to produce generally285

flashier precipitation. These results suggest care should be taken in using the WRF simulations for further applications such as

future regional climate projections or regional hydrologic modeling.

While the 12km grid spacing of these simulations is a clear refinement on the native resolution of ERA5, ultimately it would

be far more desirable to run the downscaled simulation in the convection-resolving regime (i.e., 3km or finer). We expect the

match between the precipitation frequency distribution in the tail will improve monotonically with resolution. Until convection-290

resolving scales are reached, important processes such as horizontal propagation of mesoscale convective systems will not be

properly represented. Consequently, when it becomes possible to reach these spatial scales at climatological time scales with

available computing power, we would advocate for the metrics explored in this study to be revisited.

Code and data availability. The WRF source code is available on GitHub: https://github.com/wrf-model. ERA5 is publicly accessible

from https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5. PRISM precipitation data can be downloaded from https://prism.295
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Figure 1. The WRF domain employed in this study.
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Figure 2. Timing of the diurnal precipitation peak in JJA (in units of hours at local solar time) estimated over 2003-2019. The left column

shows the timing in each dataset and uses the color scale along the bottom edge of the figure. The right column shows differences in timings

of the precipitation peak and uses the color scale along the right edge of the figure.
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Figure 3. Magnitude of the diurnal precipitation peak in JJA estimated over 2003-2019. The left column shows the magnitude in each dataset

and uses the color scale along the bottom edge of the figure. The right column shows biases in the magnitude of the precipitation peak and

uses the color scale along the right edge of the figure. Units: mm/3hr
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Figure 4. Calendar month of the monthly average precipitation peak estimated over 2001-2020.
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Figure 5. Magnitude of the monthly average precipitation peak estimated over 2001-2020. The left column shows the magnitude of the peak

in each dataset and uses the color scale along the bottom edge of the figure. The right column shows biases in the magnitude and uses the

color scale along the right edge of the figure. Units: mm/day.
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Figure 6. 3-hr precipitation frequency estimated over the 2003-2019. The left column shows the frequency in Stage IV data and uses the

color scale along the bottom of the figure. The right two columns show differences in the precipitation frequency and use the color scale

along the right edge of the figure. Units: %.
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Figure 7. 3-hr precipitation mean estimated over the 2003-2019. The left column shows the mean in Stage IV data and uses the color scale

along the bottom of the figure. The right two columns show differences in the mean and use the color scale along the right edge of the figure.

Hatching denotes grid points where the differences are found to be significant at the 5% significance level based upon t-test. Units: mm/3hr.
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Figure 8. 3-hr precipitation maximum estimated over 2003-2019. The left column shows the mean in Stage IV data and uses the color scale

along the bottom of the figure. The right two columns show differences in the mean and use the color scale along the right edge of the figure.

Hatching denotes grid points where the differences are found to be significant at the 5% significance level based upon t-test. Units: mm/3hr.
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Figure 9. Probability density function (PDF) of 3-hr precipitation annual maximum estimated over 2003-2019. The Y-axis is plotted on

log-scale.
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Figure 10. As Fig. 6 but for 24-hr precipitation frequency estimated over 2001-2020. Units: %
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Figure 11. As Fig. 7 but for 24-hr precipitation mean estimated over 2001-2020. Units: mm/day.
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Figure 12. As Fig. 8 but for 24-hr precipitation maximum estimated over the 2001-2020. Units: mm/day.
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Figure 13. As Fig. 9 but for the PDF of 24-hr precipitation maximum estimated over 2001-2020.
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Table 1. Regions where ERA5 or WRF precipitation (P) fidelity is subjectively better.

Precipitation parameter

(observation-based dataset)

<relevant Figure>

ERA5 WRF Comments

Diurnal timing of peak P

(Stage IV) < Fig. 2 >

The peak occurs earlier over

much of the CONUS, especially

along the northern boundaries

of the Northern Great Plains

(NGP) and west of the Great

Lakes in the Midwest (MW).

Earlier peak over much of

CONUS, better in NE. OEPC

(overnight eastward progression

of convection) too early in north-

ern NGP, too late in SGP.

Generally larger biases are with OEPC

in NGP & parts of: SGP and MW. Both

datasets are too late for northern OEPC

and too early for southern OEPC. (Note:

12 hrs late = 12 hrs early). Both are too

early along NW coast.

Magnitude of JJA peak di-

urnal P (Stage IV) <Fig. 3>

Better over SE & SGP. Too wet

over south FL & Rockies.

Too large over most of SE & less

so over NE & eastern MW. Too

dry over northern SGP. Better over

Rockies.

ERA5 & WRF fine over NW & SW

though the magnitude is smaller than

elsewhere.

Timing of monthly average

precipitation peak (PRISM)

<Fig. 4>

Simulates the spatial pattern ex-

cept over NE & Gulf regions.

Slightly better over SGP, NE,

northern SE, & Great Basin.

NW, SW, NGP, MW, & southeastern SE

good in both datasets.

Magnitude of the monthly

average precipitation peak

(PRISM) <Fig. 5>

Too dry over most of SE & NE,

& eastern NW. Too wet over

SGP, much of NGP, & coastal

NW.

Generally better over whole

CONUS

Both the magnitude and timing of the

annual cycle are improved in WRF.

Annual 3-hr P frequency

(Stage IV) <Fig. 6>

Generally too frequent (>5%)

everywhere, less error over

southern SW.

Better over NGP, MW, SGP, west-

ern SE. SW & NW generally bet-

ter except not frequent enough

along coastal & west-slopes of:

NW & SW.

Both datasets too frequent (>5%) over

most of: SE, MW, & NGP.

Seasonal 3-hr P frequency

(Stage IV) <Fig. 6>

Seasons have similar excess as

annual except JJA has reduced

excess over most of SW & NW.

Better at coast & western slopes

in DJF, MAM, & SON.

Patterns differ from annual: west-

ern SW better during JJA. SGP

worse during MAM. SE better in

MAM & SON, too frequent dur-

ing JJA.

ERA5 has frequent P throughout the

year, WRF displays seasonal variation.

Annual 3-hr average P

(Stage IV) <Fig. 7>

Generally too wet, except good

in SE & southwestern SW.

Best over SGP. Worse over most

of SE & NE. Too dry at NW

coast. Generally, slightly smaller

bias elsewhere.

seasonal biases in WRF over SGP are

better except in JJA.
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Table 1 (Contd . . . ).

Precipitation parameter

(observation-based dataset)

<relevant Figure>

ERA5 WRF Comments

Seasonal 3-hr average P

(Stage IV) <Fig. 7>

MAM: slightly better in NE, SE,

SW, & NW coast. JJA: better

over SE, SGP, & NE. SON: bet-

ter in SE, and better along NW

coast.

MAM: SGP better. During JJA:

SGP & western SE too dry, while

eastern SE & all of NE are too wet.

SON: better over NGP, MW, and

interior SW

DJF similar in both, except NW coast

better in ERA5. MAM similar over NGP

& MW for both. Though opposite: SON

good in both over SGP.

Annual 3-hr max P (Stage

IV) <Fig. 8>

Generally too small over whole

CONUS, especially eastern SE.

Better over most of NW, NGP, &

SW. Much too wet over SGP, MW,

SE, & NE.

Most larger values cover SE and eastern

SGP.

Seasonal 3-hr max P (Stage

IV) <Fig. 8>

Generally too small over

CONUS though bias least dur-

ing SON. Only notable area too

wet is NGP during DJF. Worst

bias during JJA over most of SE

& border between SGP & SW.

Generally too wet over MW, NE,

& SE though bias least during

DJF. Worst biases during JJA too

wet over most of MW, NE, & SE

while too dry over interior SW.

MAM and SON too wet over SE

& southern SGP.

WRF shows wet bias in the eastern

CONUS, ERA shows dry bias roughly

everywhere.

Probability density function

(PDF) of 3-hr max P (Stage

IV) <Fig. 9>

3-hr max P values are severely

underrepresented.

Much better representation. Large

underestimation in NGP and over-

estimation in SGP

NGP and SGP are problematic regions

for WRF

Annual 24-hr P frequency

(PRISM) <Fig. 10>

Generally better over SW &

coastal NW. Generally too fre-

quent over NGP, SGP, MW, NE,

& SE.

Generally better over NGP, MW,

& NE. Too frequent over east-

ern SE. Much too infrequent over

most of: NW, SW, SGP.

Highest observed over: NE, south FL,

coast and mountains of NW & NGP.

Seasonal 24-hr P frequency

(PRISM) <Fig. 10>

DJF better along coastal NW

& most of SW. DJF, MAM, &

SON: too frequent over NGP,

MW, NE, SE, SGP, and most of:

SW & NW.

DJF is better over most of MW,

NE, & SGP. Coastal & moun-

tainous: NW & SW are generally

too infrequent during DJF, MAM,

& SON. SE too infrequent dur-

ing DJF but other seasons too fre-

quent. JJA: much too infrequent

over all but opposite bias over

parts of SE & NE. SON: too in-

frequent over most of CONUS

Both datasets too infrequent along NW

coast during DJF & SON, though ERA5

better there. Both too infrequent during

JJA over most of SW.
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Table 1 (Contd . . . ).

Precipitation parameter

(observation-based dataset)

<relevant Figure>

ERA5 WRF Comments

Annual 24-hr average P

(PRISM) <Fig. 11>

Worse biases (dry) over south-

ern SE.

Worse biases (dry) over western

SE and most of SGP.

observed peak values over western SE

and coastal NW. Datasets generally sim-

ilar except SE, SGP, & coastal NW

where WRF has greater dry bias.

Seasonal 24-hr average P

(PRISM) <Fig. 11>

MAM & SON biases generally

similar to DJF. JJA has largest

biases (dry) covering all of: SGP

& SE & much of: MW & NE.

JJA & SON better over NGP,

MW, SGP, & western SE.

MAM bias similar to DJF. Largest

bias (dry) is during JJA and cov-

ers SGP, most of: MW & NGP,

and western SE. SON: coastal SE

is better.

DJF: similar in both datasets with

greater bias along coast of NW, & Gulf

of Mexico coast of SE. Largest seasonal

values are at coastal NW during DJF;

ERA5 captures this better. Secondary

maximum during JJA covers FL and SE

Gulf of Mexico coast; both datasets un-

derestimate these larger values.

Annual 24-hr max P

(PRISM) <Fig. 12>

General dry bias over SGP, MW,

SE, & NE. Slightly better over

NW & SW.

Wet bias over most of SE, NE,

eastern MW, & parts of: SW, NGP,

& NW.

Datasets do well over NW, NGP, & SW.

They have opposite biases over most of

SE, NE, MW, & southern SGP.

Seasonal 24-hr max P

(PRISM) <Fig. 12>

DJF: dry bias mainly in SE.

MAM, JJA, & SON: dry bias

across SGP, SE, MW, & NE.

DJF: better over SE. MAM &

SON: better over most of: SGP,

SE, MW, NE. JJA: wet bias over:

NE & eastern and southern SE.

Performance similar over SW, NW, &

NGP. Both have large dry bias over SGP

during JJA. Bias generally smaller over

SW, NW, and NGP, but so are the ob-

served means.

Probability density func-

tion (PDF) of 24-hr max P

(Stage IV) <Fig. 13>

24-hr max P values are severely

underrepresented.

Much better representation. 24-hr PDF representation is better than

the 3-hr PDF in WRF.
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